Additive Manufacturing Open Cluster in Bavaria: TUM, Oerlikon, GE Additive & Linde Collaborate

Share this Article

Several heavy hitters on the international additive manufacturing scene have come together to form a research cluster. With the goal of researching AM processes from one location, a ‘single hub,’ The Technical University of Munich (TUM), Oerlikon, GE Additive and Linde are collaborating on how to integrate AM into manufacturing processes and help companies transition to the use of newer technology.

Designated as an ‘open cluster,’ the collaboration will include numerous universities responsible not only for researching AM but also teaching. Regulatory authorities are also involved in the cluster, as they continue to perform oversight and regulation regarding industry technologies. The collaboration will be open to expansion with new participants as time goes on.

“By having all of the players located in a single hub, we are accelerating the development and application of the technology for the various industries,” commented Professor Dr. Michael Suess, Chairman of the Board of Directors of the Oerlikon Group, in a recent press release sent to 3DPrint.com. “Bavaria is the perfect place for us to house this initiative as it promotes energy and production efficiency, which supports Germany’s sustainability goals and the country’s desire to incorporate new technologies.”

From left to right: Dr. Sven Hicken (Business Unit Head, Oerlikon AM), Prof. Dr. Thomas Hofmann (President, TUM), Jason Oliver (President and CEO, GE Additive), Dr. Wolfgang Dierker (CEO, GE Germany), Dr. Christoph Laumen (Executive Director R&D, Linde AG), Prof. Dr. Michael Suess (Chairman of the Board of Directors, Oerlikon Group), Dr. Christian Haecker (Head of Industrialization, Oerlikon AM), Dr. Andreas Lessmann (Managing Director, GE Additive Germany GmbH, Senior Leader, Legal Operations), Dr. Christian Bruch (Executive Vice President & CEO, Linde Engineering), Andreas Rohregger (Head of Global Properties, GE Additive), Dr. Alice Beck (Deputy Director, TUM ForTe). Signing Letter of Intent in Dec. 2018.

Organizations such as TUM, Oerlikon, GE Additive and Linde are highly invested in the transformative powers of AM, as well as helping companies adjust to the accompanying changes to the following:

  • Supply chain
  • Production
  • Employee training
  • Quality inspection
  • Product validation
  • Regulation

 “The project is an excellent example of close collaboration between industry, academia and politics to innovate and industrialize a technology like additive manufacturing,” commented Dr. Roland Fischer, CEO of the Oerlikon Group. “AM is a technology that supports our aim of providing sustainable solutions for all industries.”

The group has chosen a progressive locale for their work in AM:

“Bavaria already enjoys a stellar reputation as a global hotspot for additive technology – with a thriving ecosystem and a rich seam of talent,” said Jason Oliver, President and CEO of GE Additive. “We’re excited to be part of this initiative from the very beginning and look forward to building on that solid foundation and driving tangible impact both for the region itself and further afield.”

One of the initial steps taken on by the research cluster will be the opening of The Additive Manufacturing Institute, a site dedicated to:

  • Interdisciplinary research in raw material powders
  • Optimized AM production
  • End-to-end process integration (plus automation and AM digitalization)

As they continue to offer a comprehensive program regarding AM research and operating procedures, Oerlikon will be sending both engineers and scientists to TUM faculties—also assisting in verification and qualification of product development.

“We see this opportunity to collaborate as a win for the companies and TUM, as well as for the region,” said Dr. Christian Bruch, Member of the Executive Board, CEO of Linde Engineering. “We expect the new hub will bring jobs to the area, while also delivering new technologies and capabilities to the companies located here.

The institute will be open to other companies and universities also, but not until after the initial foundation is set, with frameworks established. Projects such as this are an extension for companies like GE Additive, already heavily involved in offering innovation such as development of new combat vehicles, new materials like metal powders, magnetic components, and much more.

“An integrated collaboration between powerful partners from industry and science is necessary for the industrialization of additive manufacturing processes,” said Professor Dr. Thomas Hofmann, President of TUM. “This is the only way we will be able to overcome technological obstacles and find answers to unresolved issues in the field of standardization.”

The new additive manufacturing cluster and research institute are being highlighted at the Munich Technology Conference (MTC3), which is currently taking place at the Technical University of Munich in Germany (October 8-10, 2019). The conference this year addresses the industrialization of additive manufacturing and features top speakers from the industry, academia and political sectors.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: Oerlikon press release]

Share this Article


Recent News

Additive Manufacturing Collaboration: Ai Build & WEBER Offer Advanced Large-Scale 3D Printing Solutions

Qrons is Developing 3D Printable Implants to Treat Brain Injuries



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Awakens Renewed Interest in Polymeric Heart Valves for Patient-Specific Treatment

Authors Charles D. Resor and Deepak L Batte review the recent work of André R. Studart and his co-researchers in creating artificial heart valves via 3D printing. Their findings are...

3D Printed Microfluidic Device Designed to Customize Cancer Treatment

Testing cancer treatments is a lot of trial and error currently, and patients are often subject to multiple uncomfortable and time-consuming therapies before finding one that works. Developments have been...

Comparing the Operational Characteristics of Plastic 3D Printed Spur Gears

Spur gears, which can achieve high transmission ratio and energy efficiency, are comment elements used in the transmission of motion and high intensity power for mechanical power drives, i.e. belt...

Russian Researchers Develop Biocompatible 3D Polymeric Materials for Tissue Repair

Many researchers and scientists have turned to 3D printing for applications in tissue engineering, and a team from the Polymer Materials for Tissue Engineering and Transplantology Laboratory of Peter the Great St....


Shop

View our broad assortment of in house and third party products.


Print Services

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!