Architecture Intelligence Research Lab at SUTD Installs 3D Printed Pavilion for Mid-Autumn Festival

Share this Article

The first fully functional 3D printed structure was designed and built in Singapore recently by a research group under the direction of architects and professors at Singapore University of Technology and Design (SUTD). The research group, Architecture Intelligence Research Lab (AirLab), at SUTD, created the structure—called AirMesh—and installed it for use as a pavilion at Gardens by the Bay. This site also coincides with the Mid-Autumn Festival 2019.

Airmesh has been in the works for five years now at SUTD with Professors Carlos Bañon and Felix Raspall. Employing the most classic benefits of 3D printing, the group’s goal was to create products with ‘extreme lightness’ as well as making a structure optimized for high performance. The team worked together from a common point of inspiration: a 3D neural network concept that is not only interconnected but ‘extremely redundant.’

The design makes up the world’s first space frame, following Eurocode regulations, approved by Singapore Building Construction Authority (BCA) for a short time of occupation. The ‘digitally-crafted belvedere’ is installed and has been open to visitors since August 30, 2019.

“As the first of its kind, it fosters Singapore’s design and innovation edge. AirMesh structural prowess pushes the limit of slenderness and therefore aims to inspire dare and curiosity in users,” said Bañon, Lead Designer.

The designers were able to create the lightweight structure due to the tetrahedral configuration, bearing the load of 200 linear elements coming together in 54 parametric bespoke 3D printed nodes. Described also as an ‘ethereal pavilion,’ the structure is situated on a green slope, attached in eleven points. Its convex hull is meant to connect visitors to the following four points as the breeze and sunshine flow through:

  • The Dragonfly River
  • The SG50 Dome
  • Entrance path
  • Marina Bay Sands rooftop

Two layers of white netting adorn the structure, along with LED lights illuminating it at night.

“As the first of its kind, it fosters Singapore’s design and innovation edge. Airmesh structural prowess pushes the limit of slenderness and therefore aims to inspire dare and curiosity in users,” said Bañon.

The space frames designed here required a new level of freedom, innovative tools, and progressive technology. Assembly took two days, with manpower requiring only five as they assembled the whole pavilion, which weighs 700kg.

“Over five years, we have developed a system whereby any form can be conceptualized, fabricated and assembled by means of computer code created in our lab. It unlocks immense possibilities for future architectural designs like transportation hubs, large span roofs, and even skyscrapers,” said Anna Toh Hui, Lead Researcher, Airlab SUTD.

The research team consisted of Anna Toh Hui Ping, head researcher, working with David Rosen, Vahid Hassani, Jenn Chong, Sourabh Maheshwary, Sihan Wang, Liu Chi, Huang Kunsheng, Luo Qihuan, Aurelia Chan, and Cheong Yilei.

“With this new milestone, SUTD is proud to put Singapore at the forefront of innovation in high performance 3D printing in architecture and structural design,” said Bañon.

One of the most fascinating aspects of 3D printing today is the potential offered in architecture, whether users are creating prototypes for walls and arches, homes of the future, or even creating interactive living structures. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: Singapore University of Technology & Design]

Share this Article


Recent News

Additive Manufacturing Collaboration: Ai Build & WEBER Offer Advanced Large-Scale 3D Printing Solutions

Qrons is Developing 3D Printable Implants to Treat Brain Injuries



Categories

3D Design

3D Printed Art

3D Printed Food

3D Printed Guns


You May Also Like

3D Printing Awakens Renewed Interest in Polymeric Heart Valves for Patient-Specific Treatment

Authors Charles D. Resor and Deepak L Batte review the recent work of André R. Studart and his co-researchers in creating artificial heart valves via 3D printing. Their findings are...

3D Printed Microfluidic Device Designed to Customize Cancer Treatment

Testing cancer treatments is a lot of trial and error currently, and patients are often subject to multiple uncomfortable and time-consuming therapies before finding one that works. Developments have been...

Comparing the Operational Characteristics of Plastic 3D Printed Spur Gears

Spur gears, which can achieve high transmission ratio and energy efficiency, are comment elements used in the transmission of motion and high intensity power for mechanical power drives, i.e. belt...

Russian Researchers Develop Biocompatible 3D Polymeric Materials for Tissue Repair

Many researchers and scientists have turned to 3D printing for applications in tissue engineering, and a team from the Polymer Materials for Tissue Engineering and Transplantology Laboratory of Peter the Great St....


Shop

View our broad assortment of in house and third party products.


Print Services

Subscribe To Our Newsletter

Subscribe To Our Newsletter

Join our mailing list to receive the latest news and updates from our 3DPrint.com.

You have Successfully Subscribed!